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Abstract

Current efforts in space weather forecasting of CMEs have been focused on predicting their arrival time and magnetic structure. To make
these predictions, methods have been developed to derive the true CME speed, size, position, and mass, among others. Difficulties in determining
the input parameters for CME forecasting models arise from the lack of direct measurements of the coronal magnetic fields and uncertainties in
estimating the CME 3D geometric and kinematic parameters after eruption. White-light coronagraph images are usually employed by a variety of
CME reconstruction techniques that assume more or less complex geometries. This is the first study from our International Space Science Institute
(ISSI) team “Understanding Our Capabilities in Observing and Modeling Coronal Mass Ejections”, in which we explore how subjectivity affects
the 3D CME parameters that are obtained from the Graduated Cylindrical Shell (GCS) reconstruction technique, which is widely used in CME
research. To be able to quantify such uncertainties, the “true” values that are being fitted should be known, which are impossible to derive from
observational data. We have designed two different synthetic scenarios where the “true” geometric parameters are known in order to quantify
such uncertainties for the first time. We explore this by using two sets of synthetic data: 1) Using the ray-tracing option from the GCS model
software itself, and 2) Using 3D magnetohydrodynamic (MHD) simulation data from the Magnetohydrodynamic Algorithm outside a Sphere
(MAS) code. Our experiment includes different viewing configurations using single and multiple viewpoints. CME reconstructions using a single
viewpoint had the largest errors and error ranges overall for both synthetic GCS and simulated MHD white-light data. As the number of viewpoints
increased from one to two, the errors decreased by approximately 4◦ in latitude, 22◦ in longitude, 14◦ in tilt, and 10◦ in half-angle. Our results
quantitatively show the critical need for at least two viewpoints to be able to reduce the uncertainty in deriving CME parameters. We did not find
a significant decrease in errors when going from two to three viewpoints for our specific hypothetical three spacecraft scenario using synthetic
GCS white-light data. As we expected, considering all configurations and numbers of viewpoints, the mean absolute errors in the measured CME
parameters are generally significantly higher in the case of the simulated MHD white-light data compared to those from the synthetic white-light
images generated by the GCS model. We found the following CME parameter error bars as a starting point for quantifying the minimum error
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in CME parameters from white-light reconstructions: ∆θ (latitude)=6◦+2◦
−3◦ , ∆φ (longitude)=11◦+18◦

−6◦ , ∆γ (tilt)=25◦+8◦
−7◦ , ∆α (half-angle)=10◦+12◦

−6◦ , ∆h
(height)=0.6+1.2

−0.4 R�, and ∆κ (ratio)=0.1+0.03
−0.02.
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1. Introduction

Coronal mass ejections (CMEs) are large-scale eruptions
of plasma and magnetic fields from the Sun that are usu-
ally regarded as the major drivers of geomagnetic effects at
Earth. Current efforts in space weather forecasting of CMEs
are largely focused on predicting their arrival time (e.g., Zhao
& Dryer, 2014; Riley et al., 2018) and their magnetic structure
(e.g., Riley et al., 2017; Kilpua et al., 2019). Other related pa-
rameters that have gained the attention of the community are
CME speed, size, and mass (see e.g. the review by Vourlidas
et al., 2019, and references therein). Despite the development
of numerous models and techniques aimed at predicting each
of these parameters (together or separately), current predictive
capabilities are still affected by relatively large errors. With re-
gard to the current status of CME arrival time prediction, recent
studies have agreed that, regardless of the method used, typical
errors seem to revolve around ±10 hr (e.g., Riley et al., 2018;
Wold et al., 2018; Vourlidas et al., 2019). Apart from the well-
known issues related to understanding how CMEs are launched
from the Sun (Green et al., 2018) and how they evolve through
interplanetary space (Manchester et al., 2017; Luhmann et al.,
2020), it is clear that one major drawback lies in the lack of reli-
able observation-based input. This includes CME input param-
eters (such as initial speed, geometrical properties, etc.) as well
as input of the heliospheric background through which CMEs
propagate, which are themselves associated with errors (e.g.,
Lee et al., 2009; Hinterreiter et al., 2019).

Difficulties in determining the input parameters for CME
forecasting models arise from the lack of direct measurements
of the coronal magnetic fields and uncertainties in estimating
the CME geometric and kinematic parameters after eruption.
When evaluating the three-dimensional (3D) CME structure
and speed, it is common procedure to derive such parameters
from remote-sensing data. White-light coronagraph images are
usually employed by a variety of models that assume more or
less complex geometries. The simplest estimates can be ob-
tained by fitting 2D ellipses (e.g., Yurchyshyn et al., 2007) or
3D cones (e.g., Zhao et al., 2002; Xie et al., 2004; Xue et al.,
2005) to single-viewpoint images. These techniques were ini-
tially developed to use data from the Large Angle and Spectro-
metric Coronagraph (LASCO; Brueckner et al., 1995) instru-
ments onboard the Solar and Heliospheric Observatory (SOHO;
Domingo et al., 1995). After the launch of the Solar Ter-
restrial Relations Observatory (STEREO; Kaiser et al., 2008)
twin spacecraft in 2006, the coronagraphs that are part of the
Sun-Earth Connection Coronal and Heliospheric Investigation

(SECCHI; Howard et al., 2008) suite began to provide two ad-
ditional viewpoints from Earth’s orbital distance. Such new ob-
servations allowed the development of stereoscopic techniques
to investigate the 3D structure and kinematics of CMEs.

Triangulation methods were developed and employed, e.g.,
by Mierla et al. (2008), Temmer et al. (2009), Liu et al.
(2010), Liewer et al. (2011), Braga et al. (2017), and Balmaceda
et al. (2018) to derive the de-projected kinematic properties
of CMEs. Coronagraph images from two different locations
can nowadays be analyzed online through the STEREO CME
Analysis Tool (StereoCAT; https://ccmc.gsfc.nasa.gov/
analysis/stereo/), which uses the triangulation algorithm
described in Mays et al. (2015). Meanwhile, more complex ge-
ometrical models describing CME morphology emerged. For
example, the Graduated Cylindrical Shell (GCS; Thernisien
et al., 2006, 2009; Thernisien, 2011) model can use both
STEREO viewpoints, together with the additional view from
SOHO, and an ad-hoc geometrical CME model to recover the
3D structure of CMEs in the solar corona. Three viewpoints can
be employed in a variety of other models, including the Space
Weather Prediction Center CME Analysis Tool (SWPC CAT;
Millward et al., 2013), the empirical model of Wood & Howard
(2009)—applied to 31 events in Wood et al. (2017), the Flux
Rope in 3D (FRi3D; Isavnin, 2016) model, and the revised cone
model (Zhang, 2021, 2022).

Several studies have focused on the comparison of differ-
ent CME reconstruction methods based on coronagraph im-
agery. Mierla et al. (2010) applied five reconstruction tech-
niques to seven CMEs observed by the coronagraphs onboard
both STEREO spacecraft in order to derive their propagation
angles. They concluded that all tested methods yield latitudi-
nal and longitudinal values that usually lie within ∼10◦ of each
other, suggesting that exceptions are due to the fact that differ-
ent techniques can be applied to different parts of a CME. Jang
et al. (2016) analyzed 306 (partial and full) halo CMEs and
compared the resulting 2D parameters from single-spacecraft
measurements (using plane-of-sky observations from SOHO)
and 3D parameters from multi-spacecraft measurements (us-
ing StereoCAT with STEREO data). They concluded that 2D
speeds are usually underestimated by ∼20%, while 2D widths
tend to be remarkably overestimated compared to their corre-
sponding 3D parameters. Recently, Paouris et al. (2021) pre-
sented a new geometrical approach for the correction of plane-
of-sky CME speeds. In their study, the uncertainty in the de-
projected speed estimates were bounded via upper and lower
limits in the true angular width of a CME utilizing multi-
viewpoint observations. The de-projected speeds were ∼12.8%
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greater than their plane-of-sky speeds for the full 1037 event
sample. The de-projected CME speeds were then utilized to es-
timate the CME arrival time at Earth also taking into account the
3D geometry of the CME. They found that slower CMEs are de-
scribed better by using a spherical front to de-project the speed,
whereas faster CMEs are likely flatter. However, they found
only slight improvements in CME arrival time metrics when us-
ing de-projected speeds compared to using uncorrected speeds.
Lee et al. (2015) applied three different reconstruction methods
to 44 (partial and full) halo CMEs from Earth’s viewpoint, in
order to establish whether the resulting 3D parameters are con-
sistent with each other. In particular, the authors compared the
single-viewpoint ice-cream cone model of Xue et al. (2005), the
StereoCAT tool, and the GCS model. The study concluded that,
while the two multi-viewpoint reconstructions methods are in
reasonably good agreement, the cone model applied to single-
spacecraft data is generally consistent with multi-spacecraft
techniques when determining CME speed, but tends to underes-
timate the angular width for wide angular-width events (>100◦).
If replicated, these results could be promising, especially con-
sidering that coronagraph images from multiple viewpoints are
not available at all times. Contact with the STEREO-B space-
craft was lost in late 2014 and STEREO-A data were not avail-
able during most of 2015 due to its location on the far side
of the Sun. Furthermore, as STEREO-A approaches the Earth
by ∼22.5◦ per year, the spacecraft has become too close (mid
2022) to provide significant additional information compared
to Earth’s L1 viewpoint.

In brief, it seems that different reconstruction methods yield
results that are generally consistent with each other. However,
it is important to note that most of the techniques mentioned
above are not automated, hence the resulting parameters are
highly dependent on the specific user that utilizes them. On
the other hand, thus far automated or semi-automated tech-
niques are not trustworthy enough compared to fitting by a
human—e.g., automated routines may split one CME into mul-
tiple CMEs (Riley et al., 2018; Rodriguez et al., 2022). To the
best of our knowledge, there is no published literature that ex-
plores how subjectivity affects the 3D CME parameters that are
obtained from any reconstruction technique. To be able to quan-
tify such uncertainties, one would need to know the “true” val-
ues that are being fitted and this is impossible to derive from
observational data. To approach this problem, we have de-
signed two different synthetic situations where the “true” ge-
ometric parameters are known or can be derived, in order to
quantify such uncertainties for the first time. To this end, we
have generated synthetic line-of-sight integrated white-light in-
tensity images: 1) Using the ray-tracing option from the GCS
model software itself, and 2) Using 3D magnetohydrodynamic
(MHD) simulation data from the Magnetohydrodynamic Algo-
rithm Outside a Sphere (MAS; e.g., Riley et al., 2012, 2019)
model. For the purpose of this study, we have chosen to use the
GCS fitting technique, which is readily available to the commu-
nity via IDL SolarSoft (Freeland & Handy, 1998). Our analysis
is performed on both single and multiple viewpoints.

It is important to consider CME reconstructions using coro-
nagraph data within the larger context of space weather fore-

casting. As mentioned above, the resulting 3D parameters are
often used as input for CME propagation models to estimate
their arrival time and impact at Earth or other locations. While
large international efforts (see e.g. the CME Arrival Time
and Impact Working Team; https://ccmc.gsfc.nasa.gov/
assessment/topics/helio-cme-arrival.php) are cur-
rently focused on benchmarking the performance of different
propagation models (e.g., Verbeke et al., 2019). However, no
large studies involving many different users have been per-
formed with the aim of quantifying the uncertainties related
to CME input parameters that are usually derived from 3D re-
constructions, in order to evaluate how such uncertainties af-
fect CME propagation modeling results. In practical applica-
tions, such uncertainties will be highly valuable e.g. for en-
semble modeling (Mays et al., 2015). The work presented in
this paper is a result of an International Space Science Institute
(ISSI) team “Understanding Our Capabilities in Observing and
Modeling Coronal Mass Ejections” whose goal is to explore the
errors associated with CME forecasting, both from an observa-
tional point of view, such as presented within this paper, as well
as for CME propagation modeling.

In this context, the work presented here aims to represent
the initial step toward the creation of such benchmarking. The
manuscript is organized as follows. Section 2 describes the
methodology and results for the synthetic white-light data gen-
erated from the GCS model, while Section 3 shows the method-
ology and results employed on the 3D MHD simulation data.
Our results are discussed in Section 4, while our main conclu-
sions are drawn in Section 5.

2. Synthetic White-light Data derived from the Graduated
Cylindrical Shell model

2.1. The Graduated Cylindrical Shell Model

The GCS model (Thernisien et al., 2006, 2009) is an
empirically-defined density model designed to reproduce the
large-scale flux-rope morphology of CMEs (see e.g. Vourlidas
et al., 2013, for an in-depth discussion of the flux-rope mor-
phology identifiable in coronagraph images). Its geometry is
often referred to as a “hollow croissant” and consists of a half-
torus frontal part with two conical legs connected back to the
Sun. The resulting shape, reminiscent of a croissant, is “hol-
low” in the sense that the electron density is placed uniquely on
the shell of the model. The GCS model can produce a synthetic
line-of-sight integrated white-light intensity image for compar-
ison with coronagraph images of CMEs. This means that fits
performed with the GCS model can provide geometrical pa-
rameters of CMEs, but no information on their magnetic field
structure. The shape and size of the croissant’s shell is defined
by a series of parameters that users can adjust while performing
a fit: central latitude (θ) and longitude (φ), axial tilt (γ, calcu-
lated with respect to the solar equator), height of the apex (h),
aspect ratio (κ, i.e., the ratio of the CME size at two orthogo-
nal directions), and half-angle (α, i.e., the half-angular distance
between the leg axes). The model becomes equivalent to the
classic ice-cream cone model (Fisher & Munro, 1984) when α
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is set to zero. Other derived parameters include the half-angle
of the conical legs δ, related to the aspect ratio κ as κ = sin δ,
as well as the face-on width ωFO = 2(α + δ) and edge-on width
ωEO = 2δ, which coincide when α = 0◦ (Thernisien, 2011).
However, these widths are specific to the GCS geometry and
defined as the position angle between the croissant legs which
taper rapidly. Compared to the way plane-of-sky widths are
measured from coronagraph CME images, the GCS widths are
usually an overestimation, which becomes important when us-
ing these as inputs to CME propagation models. For this reason
we also computed the face-on width at β = 0◦ (see Figure 1 in
Thernisien, 2011, for angle definitions). The face-on width at
β = 0◦ is derived from the geometry as:

ωFO(β=0◦) = arctan

 sinα + κ
√

1 − κ2 + sin2α

1 − κ2

 . (1)

Thernisien et al. (2006) warned about three main sources
of errors in the model, the first given by errors intrinsic to the
fitting method, the second being the error that stems from the
photometric modeling assumptions (i.e., related to the electron
density), and the third one related the results being dependent
on the user’s expertise and subjective interpretation of the phe-
nomenon. Regarding the first source of uncertainty, it is impor-
tant to note that, due to the symmetry of the model, different
parameters may fit the same CME well (i.e., the set of solu-
tions may not be unique). This is especially true when fitting
single-spacecraft data, which provide a single 2D projection of
a 3D structure. However, when different viewpoints are avail-
able, the observations are always made from the ecliptic plane
and because most solar activity comes from roughly equatorial
latitudes, there are not enough constraints on the CME recon-
struction. Thernisien et al. (2009) performed a sensitivity anal-
ysis using a semi-automated evaluation of the GCS fit for each
parameter for 26 events, finding a mean deviation of ±1.8◦ in
latitude, ±4.3◦ in longitude, and +0.07

−0.04 in aspect ratio κ. The de-
viations for tilt (±22◦) and half-angle α (+13◦

−7◦ ) were found to be
an order of magnitude larger than those for latitude and longi-
tude, showing that evaluation of the orientation and axial length
of a CME is a particularly challenging task. This is especially
true for events that are seen edge-on only (i.e., the α parameter
is degenerate) and for those that present a distorted front and/or
signatures of asymmetrical expansion, or CMEs that are seen
as directly face-on only (e.g., Cremades et al., 2020).

2.2. White-light images generated from the GCS model

The first set of white-light data that we study consists of im-
ages constructed via the GCS model. The GCS model is able
to produce a synthetic line-of-sight integrated white-light inten-
sity image based on a given set of the GCS model parameters.
This procedure is implemented into the IDL SolarSoft routine
scraytrace, which also contains the GCS fitting routine. We
have selected three different synthetic GCS CME events to fit,
all of which are Earth-directed and each configuration will have
a different spacecraft separation set up. In Table 1, we provide
the GCS parameters used to create the synthetic CME events

(named A, B, and C), while Figure 1 shows the spacecraft sep-
arations and number of spacecraft for all three events.

Ten members of the team performed blind CME fits for each
scenario. The reconstructions were blind in the sense that the
spacecraft configurations relative to the CME direction were
not revealed to the observers, and additionally the team mem-
bers involved in preparing the synthetic white-light data did not
perform any of the reconstructions. For each considered CME
event, we have performed a fit using only LASCO-like white-
light data (i.e. the location of the spacecraft was at L1; these
are scenarios A1, B1 and C1), and a fit where we also used
white-light data from one to two additional spacecraft. For the
first event (A), the two spacecraft are located at L1 and +90◦

(HEEQ) from L1 (STEREO-A location, A2 scenario); for the
second (B) and third (C) events, they are located at L1 and −60◦

(L5, STEREO-B location, B2 scenario) and ±120◦ (STEREO-
A and -B, C2 scenario), respectively. For the last (C) event,
we have also performed a fit with three viewpoints where all
three spacecraft have a 120◦ separation from each other (C3
scenario), and finally one fit with two viewpoints where only
the height of the apex h of the GCS model was altered. This
latter fit will provide us with the opportunity to discuss the lin-
ear speed and associated errors derived from these two consec-
utive fits. In Figure 2 the synthetic white-light images created
for each of the GCS model events (listed in Table 1) are shown.
Note that each event is Earth-directed, so that we have an (al-
most) halo CME in L1 data, but each CME is directed slightly
differently. Hence, we should keep in mind when analysing the
final data that, as we are also using different observation an-
gles for multi-viewpoint fits, we cannot draw any conclusions
about our fitting capacities between different viewpoints. We
can, however, draw general conclusions about our fitting abili-
ties, as will be presented in the next section.

Configuration A B C
Longitude φ [◦] 25.7 −35.8 20.1
Latitude θ [◦] 11.7 −10.6 2.5
Axial tilt γ [◦] −31.9 −2.2 −11.2
Height of apex h [R�] 13.91 7.46 8.69
Aspect ratio κ 0.29 0.32 0.47
Half-angle α 42.2 50.6 52.8

Table 1. True GCS parameters for each of the configurations shown in Figure 1
and present in Section 2.2

2.3. CME reconstructions of GCS synthetic white-light data

Each of the seven configurations (three events A, B, and C
and considering different number of spacecraft: A1, A2, B1,
B2, C1, C2, and C3, as described in the previous section) have
been fitted for a total of ten times (one for each member par-
ticipating in this study). Since the true fit for the perfect GCS
model fit is known, the results allow us to learn more about the
minimum CME parameter uncertainties that should be taken
into account when performing a GCS model fit on real obser-
vational data. In Figure 3, we present results for the event in
configuration B in the form of a collection of correlation plots
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Fig. 1. Spacecraft configurations used for fitting the synthetic GCS-generated
CMEs in Heliocentric Earth Ecliptic (HEE) coordinates. The arrow denotes the
propagation direction of the CME in the ecliptic plane. A: Two spacecraft in
quadrature. B: Two spacecraft separated by 60◦, simulating two observers at
the L1 and L5 points. C: Three spacecraft separated by 120◦ from one another.

between all possible GCS fit parameters. On the left side (B1),
we show results for fittings of one viewpoint (L1) and on the
right side (B2) for fittings of two viewpoints (L1 and L5, with
60◦ separation). All of the values are shown relative to the true
GCS fit on which the white-light image data is based. The
dashed lines through the (0, 0) point show the true fit param-
eters. Each color represents a different user performing the fit,
and the yellow downward and red upward triangles represent
the mean and median of all fits, respectively. The general con-
clusions drawn from below based on the event in configuration
B are also valid for all of the other configurations, hence, we
show only results for this particular event. All fittings and re-
sults are provided as supplemental material.

As can be seen from Figure 3, when we move from one view-
point (left side) to two viewpoints (right side), the performed
fits tighten around the true values. For the one-viewpoint fit-
tings, we can observe many correlations, e.g., those who fit a
higher latitude, also tend to fit a smaller half-angle α. Such
correlations appear as diagonal lines in the plots. We note that
this is a result of the specific technique chosen (GCS) in com-
bination with projection effects, as we are only considering one
viewpoint. As a result, the correlation can change or invert de-
pending on the propagation direction and tilt of the CME and/or
the location of the spacecraft compared to the CME. In Figure 4,
we present three fittings that have been performed on configu-
ration B with one viewpoint. All three fits visually appear as a
good fit, however, they correspond to half-angles of 29◦, 48◦,
and 63◦, and to latitudes of −6◦, −10◦ and −11◦ from left to
right, demonstrating the projection effects. The main difference
between the fits and the true parameters are related to fitting the
appearance of the CME “legs” in the synthetic GCS white-light
image. However, an observer performing GCS fits on actual
white-light CME data would not see structured CME “legs” to
visibly distinguish the fits and, as such, all three fits would be
equally valid. For two spacecraft (see Figure 3 right), the cor-
relations almost entirely disappear. Only a small correlation is
left for the half-angle and height. While having two viewpoints
still results in fitting errors, the errors are significantly smaller
and systematic trends in those errors are removed.

The fitting errors are further explored in Figure 5 in the form
of box and whisker plots of the GCS fit parameters for ten fits
relative to the “true” GCS parameters for three CME events A,

B, and C (see Figure 1). The median and mean are shown by
the black and red horizontal lines, respectively. The box rep-
resents the first and third quartiles, and the whiskers show the
full range. The first and second rows show the GCS parameters
of latitude, longitude, axial tilt, half angle, height of apex and
aspect ratio κ (direct GCS outputs). In the third row, we show
the derived parameters of the face-on width ωFO, the face-on
width at β = 0◦ (ωB0, and the edge-on width ωEO (see Sec-
tion 2.1). We discuss the fourth row of figures in Section 2.5.
The configurations are labeled on the x-axis by the number of
spacecraft used to fit the CME, 1: single L1 spacecraft, 2: L1
and one additional spacecraft, 3: L1 and two additional space-
craft. The spacecraft separation angle with respect to L1 is an-
notated above each plot (+90◦, −60◦, and ±120◦ for events A,
B and C respectively). Similar to the correlation plots in Figure
3, we conclude that errors decrease and the box and whiskers
(range) move closer to the true value (error of 0) when going
from fitting only a single L1 spacecraft viewpoint (A1, B1, C1)
to adding one (A2, B2, C2) or two additional (C3) spacecraft.
Particularly for event C, going from two to three spacecraft does
not result in a significant change in fitting error. This result
is valid for this particular event and may not apply to other
configurations, but nevertheless this hints towards the crucial
need for two viewpoints for reducing CME parameter errors
used for CME arrival forecasting. One exception to the clear
trend in error decrease is with the axial tilt. For events A and
C, the tilt error slightly increases with the number of space-
craft, while it remains unchanged for event B. Using the defini-
tions for the face-on and edge-on widths by Thernisien (2011),
ωFO = 2(α + δ) and ωEO = 2δ, respectively, one can easily
show using error propagation that the corresponding width er-
rors are ∆ωFO = 2

√
∆α2 + ∆δ2 and ∆ωEO = 2∆δ, respectively.

The spread of the edge-on width will thus only depend on the
spread of the aspect ratio κ = sin δ, while the spread of the face-
on width (and similarly, the face-on width at β = 0◦) will also
depend on the half angle α. Since the error spread in the half
angle is much larger compared to the error spread in the aspect
ratio, this will result in a much larger error spread of the face-on
width compared to the edge-on width as is visible in Figure 5.

Figure 6 shows the relative error in reproducing the true GCS
fit parameters (latitude, longitude, axial tilt, half angle, and as-
pect ratio) for the ten different fits for event C with one (L1),
two (L1 and +120◦), or three spacecraft (L1 and ±120◦). Each
color represents an individual fit, the solid black line shows the
mean, and the grey shaded region shows one standard deviation
about the mean. In general, as the number of spacecraft used
in the fit increases, the fits become more accurate and the range
in errors decrease. Note that the error in the latitude does not
decrease, but neither does it increase and the latitudinal spread
is the smallest of all parameters. In general, latitude is the most
straightforward parameter to fit because it is the least impacted
by projection effects, as long as the CME is not too high in lat-
itude. However slower CMEs can show a larger deviation from
the source region (including in latitude), which results in a non-
radial propagation, that the GCS method cannot cope with (e.g.,
Temmer et al., 2009). Again, the tilt is the exception which
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Fig. 2. Images of synthetic white-light data generated by GCS ray-tracing for configurations A (top row), B (second row), and C (bottom two rows), with STEREO-B
(left), LASCO (middle), and STEREO-A (right) views. For configuration C, synthetic images were created for two different heights of 8.69 and 12.68 R�. The true
GCS fits used to create these synthetic data, are shown as the red wire frame with the parameters given in Table 1. A schematic of the configurations is provided in
Figure 1.
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Fig. 3. Correlation plots of GCS CME parameters for the ten fits using synthetic white-light data from configuration B, two spacecraft separated by 60◦ (see
Figure 1). Left - configuration B1: GCS CME parameters from fits made with only one viewpoint (L1). Right - configuration B2: parameters from fits made with
two viewpoints (L1 and L5). All of the values are shown relative to the true GCS fit on which the white-light image data is based. The dashed lines through the
(0, 0) point show the true fit parameters. Each color represents a different user performing the fit, and the yellow downward and red upward triangles represent the
mean and median of all fits, respectively. Please note the differing scales used for the various parameters.

begins with a surprisingly good single spacecraft fit. For this
particular event, the tilt may have been straightforward to fit
with only a single spacecraft (C1) viewpoint because the true
tilt was nearly 0◦ and the CME was face-on toward the observer.
As more spacecraft views are added, the observer is faced with
more options for the tilt that can also fit the other viewpoints.

In addition to the graphical exploration of fitting errors in
the earlier figures, we present the standard deviation (SD) and
Mean Absolute Error (MAE) averaged over different sets of
synthetic GCS configurations in Table 2. Column 1 is averaged
over all synthetic GCS configurations (A1 through C3), and we
also show the minimum and maximum MAE. Column 2 is av-
eraging over single spacecraft configurations A1, B1, and C1.
Column 3 is averaging over two spacecraft configurations A2,
B2, and C3 and column is the three spacecraft configuration C3.
The trends in this table are also clearly visible in Figure 6 as the
solid black line (mean) and grey shaded regions (one standard
deviation). We note that overall the spread in latitude is lower
than the one in longitude, consistent with the analysis from Th-
ernisien et al. (2009). Furthermore, the spread in half-angle
is significantly larger than in the other parameters, especially
important considering that the half-angle is a crucial parame-
ter for the forecasting of CME arrival times (see Section 2.5).
The maximum MAE values are all from the single-viewpoint
configurations A1 and C1, while the minimum MAE values are
from a mix of the two- and three-viewpoint configurations, i.e.
A2, B2, and C3. The averaged standard deviations (spread of
the fits) and MAE are largest for the CME half-angle and lon-
gitude.

2.4. Derived speed from GCS fits
When fitting real observational data, two (or more) consec-

utive GCS fits at different times are usually performed. Using
the change in the height of the apex and the time difference be-
tween the observations allows one to determine the CME speed
profile. In this study, GCS fits were only performed for a sin-
gle height for all configurations except for configuration C2
(L1 and 120◦ STEREO-A) for which we performed an extra fit
where only the height of the CME was altered (see Figure 2).
However, since the fits were performed on synthetic images,
there are no real times associated with them. Still, we wish to
explore how errors in height measurements propagate to speed
errors for a range of CME speeds. Therefore, we created a range
of hypothetical times differences that correspond to a range of
CME speeds from 400 to 2000 km s−1 with increments of 400
km s−1, based on the ‘true’ heights of 8.69 and 12.68 R�. We
can then calculate the linear CME speeds obtained from the fits
and compare to the true CME speeds derived from using the
true heights. We determine the mean error (ME), the MAE, as
well as the root mean squared error (RMSE). For all of the con-
sidered times differences and corresponding speeds, the ME are
always negative, ranging between -3 and -16 km s−1 from low
to high considered CME speeds, meaning that we are always
underestimating the CME speed. One should keep in mind that
this may be due to the specific way the synthetic white light
image data is generated as well as to the specific parts in this
image that are measured by each observer, but we expect that
these variations will increase even more when considering real
observational data. MAE range from 10 to 49 km s−1 (3% er-
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Fig. 4. Examples of different fits to LASCO synthetic images using only one viewpoint from configuration B (L5-like), performed by three different observers.
These examples illustrate a wide range in values for the half-angle. All three fits visually appear equally valid, however, they correspond to half-angles of 29◦, 48◦,
and 63◦, and to latitudes of −6◦, −10◦, and −11◦ from left to right, demonstrating the projection effects.

All Viewpoints One Viewpoint Two Viewpoints Three Viewpoints
Synthetic GCS A1 – C3 A1, B1, C1 A2, B2, C2 C3

Average MAE Average Average
σ Avg Min Max σ MAE σ MAE σ MAE

Latitude [◦] 1.95 1.45 0.48 4.28 3.63 2.59 0.73 0.62 0.57 0.48
Longitude [◦] 4.17 3.44 0.98 7.77 7.37 6.36 1.65 1.19 2.16 1.47
Tilt [◦] 2.62 2.01 1.07 3.3 2.64 1.9 2.02 1.94 4.41 2.53
Half angle (α) [◦] 10.6 9.87 4.21 21.8 15.52 15.56 6.11 5.19 9.33 6.86
Height [R�] 0.64 0.61 0.12 1.8 1.28 1.21 0.15 0.16 0.16 0.15
Ratio (κ) 0.051 0.049 0.023 0.096 0.078 0.076 0.027 0.03 0.042 0.03
ωEO/2 = δ = arcsin κ 2.92 2.81 1.32 5.51 4.47 4.36 1.55 1.72 2.41 1.72
ωFO/2 = α + δ 13.52 12.68 5.53 27.31 19.99 19.92 7.66 6.91 11.74 8.58
ωFO(β=0◦)/2 6.65 6.25 2.76 12.77 9.65 9.61 3.81 3.44 5.79 4.26

Table 2. Mean absolute errors (MAE) and standard deviations (σ) for each GCS fit parameter from the synthetic GCS white-light images. Column 1: averaged over
all synthetic GCS configurations (A1 through C3), and we also show the minimum and maximum MAE. Column 2: standard deviations and MAE averaged over
single spacecraft configurations A1, B1, and C1. Column 3: standard deviations and MAE averaged over two spacecraft configurations A2, B2, and C3. Column 4:
standard deviations and MAE for the three spacecraft configuration C3. The trends in this table are also clearly visible in Figure 6 as the solid black line (mean) and
grey shaded regions (one standard deviation).

ror), with corresponding root mean square errors from 14 to 69
km s−1. Note that this experiment represents a lower bound es-
timate of the errors that arise from determining the CME speed
from coronagraph images.

2.5. CME arrival time using the parameters of the GCS fittings
Lastly, we consider the propagation of the GCS fitting errors

from the synthetic images to CME arrival time errors of the
leading edge at 1 au using the ANTEATR model (see Kay &
Gopalswamy, 2018; Kay et al., 2020, for a model description).
GCS fit parameters of latitude, longitude and width ωFO(β=0◦)
were used as input to the ANTEATR ensemble model (there-
fore ten members in the ensemble relating to the ten performed
fits). A separate ensemble was constructed for each configu-
ration (A1 to C3: 7 total) and for three different hypothetical
CME speeds, for a total of 21 ensembles. Since GCS fits were
only performed for a single time for nearly all configurations,
GCS derived speeds are not available. Therefore we consider
three CME inputs speeds that are moderate (500 km s−1), fast
(1000 km s−1), and extreme (1500 km s−1). Note that these do

not correspond to the speeds and related errors discussed in the
previous section. In Table 3 we list the CME arrival time MAE
from the ANTEATR model ensemble results for each config-
uration and speed (total of 21 options). Row 4 of Figure 5
shows the arrival time errors from the ensemble for moderate
500 km s−1 (left), fast 1000 km s−1 (middle), and extreme 1500
km s−1 (right) hypothetical CME speeds, where we have kept
the y-axis scale identical for all three plots. The gray boxes are
representative of the MAE for each configuration, which are
listed in Table 3. We can examine these errors by the number
of viewpoints used: single (A1, B1, C1), two (A2, B2, C2),
and three (C3). For the single viewpoint fits (A1, B1, C1), the
modeling results show a mean absolute arrival time error of 4,
9, and 11 hours for moderate, fast, and extreme speed CMEs
respectively. From Figure 3 we observed that the CME position
is fairly accurate compared to the half angle and ratio, there-
fore the range in arrival time errors arise primarily from the
range of CME widths which lead the CMEs to experience drag
differently within the model. For moderate speed CMEs the ar-
rival time errors of the ten fits (relative to the true fit) have a
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Fig. 5. Box and whisker plots of GCS fit parameters for ten fits relative to the true GCS fit for three events in configurations A, B, and C (see Figure 1). The median
and mean are shown by the black and red horizontal lines respectively, the box represents the first and third quartiles, and the whiskers show the full range. The
gray boxes on the bottom row are representative of the MAE of the transit time, which are listed in Table 3. Rows 1-2: GCS parameters of latitude, longitude,
axial tilt, half angle, height of apex, aspect ratio κ (direct GCS outputs). Row 3: face-on width, face-on width at β = 0◦, edge-on width (derived parameters). For
rows 1–3, please note the differing scales used for the y-axes. Row 4: arrival time errors from the ANTEATR model for moderate (left), fast (middle), and extreme
(right) hypothetical CME speeds. The configurations are labeled on the x-axis such that 1: single L1 spacecraft, 2: L1 and one additional spacecraft, 3: L1 and
two additional spacecraft. The spacecraft separation angle with respect to L1 is annotated above each plot (+90◦, -60◦, and ±120◦ for configurations A, B and C
respectively).

smaller range than faster CMEs. This is because the drag force
in the model is less effective for moderate speed CMEs. The
drag force strength experienced by the faster CMEs is sensitive
to the CME width. The ensemble CME parameter sensitivity
study of Kay et al. (2020) found that an accuracy of 5◦ − 10◦

in CME width (in addition to other parameters) is necessary to

achieve a CME arrival time error of 5 hours or less (for fast and
extreme CMEs). We can see that the trend of error decreasing
with increasing spacecraft viewpoints also holds true for the ar-
rival time error. For the two viewpoint fits (A2, B2, C2), the av-
erage of the MAE for moderate, fast, and extreme speed CMEs
is 1.0, 1.4, and 1.9 hours respectively. This is comparable to the
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Fig. 6. The relative error in reproducing the true GCS fit parameters (latitude,
longitude, tilt, half angle, and ratio) for ten different fits for event C, with one
(L1), two (+120◦), or three spacecraft (L1 and ±120◦). Each color represents
an individual fit, the solid black line shows the mean, and the grey shaded re-
gion shows one standard deviation about the mean. The mean and standard
deviations values plotted in this figure are shown in Table 2.

three viewpoint fits (C3), which have a MAE of 0.9, 2.1, and 3.7
hours. Again, we note that this experiment represents a lower
bound estimate of the arrival time errors that arise from deter-
mining the CME speed from coronagraph images. This calls
for the critical need to have at least two viewpoint observations
of CMEs to reduce CME arrival time errors arising from CME
measurements.

Speed CME Arrival Time MAE (hours)
(km s−1) A1 B1 C1 A2 B2 C2 C3

500 4.3 5.9 2.3 0.4 2.0 0.6 0.9
1000 7.8 8.8 10.0 1.6 1.6 1.0 2.1
1500 9.2 11.2 14.0 2.0 2.2 1.6 3.7

Table 3. CME arrival time Mean Absolute Error (MAE) from the ANTEATR
model for each configuration and speed.

3. Synthetic white-light data derived from an MHD Simu-
lation

3.1. White-light images derived from an MHD simulation
For the second part of our study, to increase the complex-

ity of our synthetic images we generated simualted white-light
data from an idealized thermodynamic MHD simulation of a
hypothetical fast CME, which was initiated from a stable pre-
eruptive magnetic state. This allows us to create a situation that
is closer to observational data but where we are still able to de-
rive a “true” set of CME parameters from the full 3D simulation
data available, which is not possible to obtain for actual CME
observations. The simulation and its application to the study of
Solar Energetic Particles (SEPs) has been described elsewhere
(Schwadron et al., 2015b,a, 2017).

The simulation was performed using the MAS code (Riley
et al., 2012, 2019; Török et al., 2018), which advances the stan-
dard viscous and resistive MHD equations forward in time in
a spherical coordinate system. Radiative losses, thermal con-
duction parallel to the magnetic field, and an empirical coronal
heating function are included. We simulate the region from the
solar surface to 20 R� with 251 × 301 × 261 grid cells in the r,
θ, and φ directions. The grid is non-uniform, with more points
to capture variations at lower altitudes and around the active
region where the CME originates.

We chose this particular simulation for its simplicity: an ini-
tial magnetic configuration consisting of one active region and a
global background dipole field, resembling solar minimum con-
ditions. After relaxing the configuration to an equilibrium state,
which included a reasonably realistic two-speed solar wind, we
inserted a flux rope in magnetic equilibrium along the polarity
inversion line of the active region, using the technique devel-
oped by Titov et al. (2014). After a further relaxation phase,
during which the system adjusted to this modification, we trig-
gered the eruption of the flux rope by imposing slow, localized
converging flows at the lower boundary. In Figure 7, we show
the active region and inserted flux rope. Figure 7(a) shows a
selection of field lines for the background field (coloured ac-
cording to their temperature), overlaid on a simulated white-
light image, where the solar surface is shaded according to the
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Fig. 7. Summary of MHD CME simulation setup. (a) A selection of field lines for the background field (coloured according to their temperature), overlaid on a
simulated white-light image, where the solar surface is coloured according to the polarity of the magnetic field. (b) Flux configuration that was embedded into the
background field shown in (a).

Fig. 8. Spacecraft configurations and CME directions used for creating MHD simulated white-light images of the CME in Heliocentric Earth Ecliptic (HEE)
coordinates. The arrow denotes the propagation direction of the CME in the ecliptic plane. Events E and F have a 60◦ separation, while events G and H have a 120◦

separation.

polarity of the magnetic field. Figure 7(b) shows the flux con-
figuration that is embedded into the background field shown
in (a). The resulting CME rapidly accelerates to more than
3000 km s−1 at low coronal heights, after which it quickly slows
down and propagates further with a nearly-constant speed of
about 1000 km s−1 before it reaches 3 R�. The interplanetary
evolution of this event is explored in more detail by Lionello
et al. (2013). Fits are performed about 36 minutes after the sim-
ulation start time, when the CME is approximately at a helio-
centric distance of 3.6 R�, after the CME has reached the con-
stant speed phase. Note that the simulation is of a hypothetical
CME and does not correspond to an actual event.

We have generated simulated white-light images for five dif-
ferent spacecraft configurations (labelled D through H), using
only the data of the CME simulation described above. The
simulated white-light images were created using a ray-tracing
technique through the MHD density volume, taking into ac-
count the effects of Thomson scattering present in actual ob-
servational white-light data. For each configuration, the same
CME is thus observed from different viewpoints. However, we
note that the users performing the CME reconstructions did not
know they were fitting the same CME observed from different
perspectives, but were told to fit five separate “events”. Also,
those involved in preparing the simulated white-light data did
not perform any reconstructions. In Table 4 and Figure 8 the

exact details of the spacecraft configurations can be found.
Configuration D has one viewpoint and the other four (E–H)

all have two viewpoints. Of the configurations/events with two
viewpoints, events E and F have a 60◦ separation, and events
G and H have a 120◦ separation. While not listed in Table 4,
we want to note that the latitude and the radius of the observing
spacecraft locations also slightly change. This is because actual
observational data headers from STEREO-A and STEREO-B
were applied to the MHD simulated white-light images, which
allowed us to appropriately use the SolarSoft GCS program.
Note that due to a STEREO data gap during the 120◦ separation,
the STEREO headers corresponding to a 121◦ separation were
used. Therefore, the locations correspond to the real locations
of the spacecraft at a given time corresponding to the desired
spacecraft longitudinal separation. As such, latitude and radial
distance also correspond to the spacecraft locations as well as
the changing field of view as a result of the changing radial
distance. These details are taken into account when producing
the simulated white-light images.

Unlike for the synthetic white-light images generated from
the GCS model, we do not have an obvious ground truth directly
available from the simulation. As the CME travels through the
domain of the simulation, it changes its kinematics. Moreover,
the overall morphology of the simulated CME does not straight-
forwardly compare to that of the GCS hollow croissant, imply-
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Event Viewpoint 1 [◦] STEREO-B Header Date Viewpoint 2 [◦] STEREO-A Header Date
D 90 2008-07-09T10:38:28.360 - -
E 160 2008-07-09T10:38:28.360 220 2008-07-09T10:37:30.004
F 220 2008-07-09T10:38:28.360 280 2008-07-09T10:37:30.004
G 160 2009-10-16T10:39:49.043 281 2009-10-16T10:39:00.005
H 210 2009-10-16T10:39:49.043 331 2009-10-16T10:39:00.005

Table 4. Carrington longitude locations of the spacecraft viewpoints for the MHD simulated white-light data as shown in Figure 8. The“DATE-OBS” from
observational data headers from STEREO-A and STEREO-B which were applied to the MHD simulated white-light images are also listed.

ing that the application of the GCS technique will not be a per-
fect match to the simulated CME shape. However, because we
have the full 3D simulation data available compared to just a
few 2D viewpoints for actual observational data, we are able to
derive a ground-truth value. We briefly discuss how we arrived
at the final truth value and uncertainty that was used to compare
against the fits to draw conclusions.

To determine the ground-truth GCS parameters that fit the
simulated CME best, we thoroughly explored how to track and
detect the CME within the full simulation volume using differ-
ent automated and manual methods. The automated method in-
volved tracking the maximum scaled CME density through out
the volume, and detecting the CME edges in 2D slices. How-
ever, after several tests we have decided to deduce the ground
truth in the following way, using a manual method. We used the
simulation data time step corresponding to the simulated white-
light data that was provided to the observers (corresponding to
simulation time t = 3 –code time units– about 36 minutes after
simulation start). First, to derive the true height of the CME
we reviewed a series of radial spherical slices (longitude versus
latitude) of the MHD density, scaled by the radial distance r2

(an example slice is shown in Figure 9). We searched for the
radial distance (height) at which the CME front/nose appeared
in the density slices. The full team unanimously agreed that the
CME was visible in four consecutive heights (3.99, 4.06, 4.13,
4.20 R�). The CME front was not visible after 4.20 R� while
it was definitely visible at the lower height of 3.99 R�. There-
fore we chose 4.13 R� as the ground truth CME height, and we
used the lower and higher heights to create uncertainties on this
ground truth value: 4.13+0.07

−0.14 R�. Next, we derived the true val-
ues of the CME longitude, latitude, tilt, and size by using the
spherical slice at which the CME cross-section had the largest
extent in both latitude and longitude (at time step t = 3), which
was R = 3.62 R�. Figure 9 shows the MHD scaled density at
the R = 3.62 R� spherical slice in latitude and Carrington lon-
gitude. At this height, we have manually fit three ellipses to
the CME cross-section in the density plot that the team agreed
reasonably enveloped the enhanced density region correspond-
ing to the CME. The smallest (white) ellipse envelopes only the
highest density of the CME, excluding the lower density parts
of the CME, while the largest (yellow) ellipse, envelopes the
maximum full extent of the CME density. Finally, the team
agreed that the medium (red) ellipse which envelopes most of
the CME density is the most representative ellipse fit to be used
as the truth. The small and large (white and yellow) ellipses
were then used to derive uncertainties. From these ellipses, we

derived the MHD ground truth and uncertainties for the lati-
tude, longitude, and tilt angle, using the center and orientation
of the ellipse. In addition, the GCS half-angle α and ratio κwere
derived from the ellipse minor and major axes. Note that the el-
lipse size was used to compute the non-angular GCS widths in
(WFO and WEO in Thernisien, 2011), from which the half-angle
and ratio were then derived. We present the MHD ground truth
GCS CME parameters and their uncertainties in Table 5. Since
the small, medium, and large ellipse fits were performed inde-
pendently, the resulting uncertainties are not symmetric.

Fig. 9. Figure showing the MHD scaled density at R=3.62 R� spherical slice
in longitude and latitude at the same time step of the simulated white-light
data (t =3 code time units). R=3.62 R� is the slice at which the CME cross-
section had the largest extent in both latitude and longitude. The medium red
ellipse overlay was used to derive the ground truth for the CME parameters of
longitude, latitude, tilt, half-angle and ratio, and the white ellipses were used as
the uncertainty.

Figure 10 shows the simulated white-light data from the dif-
ferent viewpoints shown in Figure 8 and listed in Table 4. The
images were created for a COR2-like field of view, out to ap-
proximately 15 R�. Here we have zoomed into the field of view
to approximately 5 R� to better show the CME. The GCS wire-
frames represent the MHD truth listed in Table 5. Configura-
tions D, E, F, G, and H are shown in rows 1–5. The white-light
images show how some other coronal structures could be con-
sidered as part of the CME when performing a GCS fitting, re-
sulting in a fit that differs from the ground truth, as discussed
in the next section. We also observe that the CME front is not
symmetric and round, as in the GCS croissant shape.
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Latitude [◦] Longitude [◦] Tilt [◦] Half-angle (α) [◦] Height [R�] Ratio (κ)

26.07+2.67
−0.56 140.06+3.19

−0.00 -88.09+4.43
−1.91 23.1+1.20

−4.00 4.13+0.07
−0.14 0.305+0.172

−0.189

Table 5. Derived ground “truth” GCS CME parameters from the MHD simulation of the CME, and their uncertainties.

3.2. CME reconstruction of simulated MHD white-light data
Now we turn to the GCS CME reconstruction and related

errors of the MHD simulated CME for the five different config-
urations as presented in Figure 8. This is a departure from the
synthetic white-light images generated by GCS (see Figure 2),
for which the GCS geometrical model can be fit perfectly. Ten
different people reconstructed the simulated CME (ten fits) us-
ing the GCS technique for each of the five configurations. As
described in the previous section, the “true” CME parameters
were derived from the MHD simulation, where we also deter-
mined an uncertainty associated with this derived truth. Still,
this is a valuable exercise because, compared to fitting real
CME data, the truth is known up to an uncertainty.

Figure 11 shows the CME fit results for all five configura-
tions (D through H) in the form of a collection of correlation
plots between all possible GCS fit parameters (in the same for-
mat as Figure 3). All of the values are shown relative to the
MHD ground-truth CME parameters, which is the (0, 0) point
(dashed cross hairs) of each plot. Because each of the five con-
figurations is actually observing the same CME event, this al-
lows us to plot the results together. For this purpose, the mea-
sured GCS longitudes (related to the actual white-light header
data) were transformed into MHD Carrington longitudes. Each
color represents a different configuration (D: red, E: blue, F:
light blue, G: purple, H: pink). The single-viewpoint configu-
ration D (red) has the largest offset from the truth values for all
parameters, except height, as well as the largest spread for most
of the parameters, compared to all of the other configurations.
We observe that the spread in reconstructed CME parameters
using one viewpoint is much larger than for two viewpoints,
particularly for the longitude parameter. Visual examination of
the ten GCS reconstructions for configuration D shows that they
could be all reasonable fits. These results point toward the crit-
ical need of more than one viewpoint to be able to reduce the
uncertainty in deriving CME parameters.

Table 6 shows the standard deviations and MAE (relative to
the ground truth) for each GCS fit parameter from the simulated
MHD white-light images. In Column 1 we are averaging over
all simulated MHD configurations (D – H), and we also show
the minimum and maximum MAE. Column 2 shows the stan-
dard deviations and MAE for single viewpoint configuration D.
Column 3 shows the values averaged over configurations E and
F in which two viewpoints are separated by 60◦ and in Column
4 they are averaged over configurations G and H in which two
viewpoints are separated by 120◦. The trends in this table are
also clearly visible in the box and whisker plots shown in Figure
12. The maximum MAE values are nearly all from the single
viewpoint configuration D, while the minimum MAE values are
from a mix of the two viewpoint configurations E–H. The mean
standard deviations (spread of the fits) and the MAE are largest

for the CME tilt and longitude, followed by latitude, half-angle,
ratio, and height. While this is from a specific simulation, these
results set constrains on the size of the error bars to consider
for CME parameters from reconstructions of actual white-light
data. For this specific case, we note that the spread for the tilt is
extremely high compared to other values. We will come back
to this point later on and discuss in more detail why this is the
case.

The fitting errors for each configuration are further explored
in Figure 12 in the form of box and whisker plots of the CME
parameters. The format of the box and whisker plots is similar
to Section 2.3; however, here we have added grey bars to denote
the uncertainty of the ground truth as discussed in Section 3.
The configurations are labeled on the x-axis: single viewpoint -
D, 60◦ separation - E and F, 120◦ separation - G and H.

We notice from Figures 11 and 12 that a few parameters
have a larger error than others; the most eye-catching are the
longitude and the tilt. We have further investigated the data to
determine possible reasons for these results. First, the team re-
viewed all of the individual fits and deemed them all reasonable
and equally valid. Next, we considered other possible reasons
due to each observer fitting different CME features or different
fitting approaches. For this purpose, we have visually compared
the GCS fits for observers that underestimated the longitude
with those that estimated the longitude closest to the ground
truth value for each of the five configurations. The leading edge
of the simulated white-light CME is not symmetric and round
like the GCS croissant shape, and the southern edge of the CME
is at a larger height compared to the CME nose, creating a flat-
tened front (see Figure 9). Upon inspection, we observed that
observers who underestimated the longitude the most tended to
fit the height of the GCS model to the CME edges, which is
above the actual CME leading edge apex. On the other hand,
the other observers matched the GCS apex close to the actual
CME leading edge to encompass more of the leading edge into
the croissant and the southern edge is above the GCS shape (this
is clearly visible in Figure 9). We also found some fits where
the observer was fitting background solar wind features as part
of the CME, which also led to larger errors in longitude. This
specific issue could have been mitigated had we provided the
observers with the simulated white-light data time series instead
of just a single time step. Finally, looking at the tilt, we found
one observer who consistently fit a low-tilt croissant and there
were a few more scattered low-tilt fits by other observers. Since
in the low-tilt-fit one is looking at the croissant predominantly
edge-on, these observers consistently compensated by using a
higher ratio (κ) to fit the leading edge of the CME. If we do not
consider these low-tilt/high-ratio fits, the spread in both tilt and
ratio decreases. Overall, we conclude that the spread between
observers is generally explained by them fitting different CME
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All Configurations One Viewpoint Two Viewpoints
Simulated MHD D – H D E, F 60◦ separation G, H 120◦ separation

Average MAE Average Average
σ Avg Min Max σ MAE σ MAE σ MAE

Latitude [◦] 4.02 6.22 3.08 7.85 5.15 7.83 3.76 7.81 3.71 3.84
Longitude [◦] 12.81 11.16 4.81 28.76 37.65 28.76 5.34 6.77 7.88 6.74
Tilt [◦] 29.64 25.39 18.39 33.2 39.07 33.2 28.72 27.5 25.83 19.37
Half angle (α) [◦] 6.17 5.86 3.75 8.11 9.79 8.11 6 6.75 4.54 3.84
Height [R�] 0.32 0.33 0.18 0.57 0.42 0.36 0.21 0.22 0.38 0.43
Ratio (κ) 0.109 0.098 0.074 0.129 0.146 0.129 0.11 0.1 0.09 0.08
ωEO/2 = δ = arcsin κ 6.26 5.62 4.24 7.41 8.4 7.41 6.32 5.74 5.16 4.59
ωFO/2 = α + δ 12.43 11.48 7.99 15.52 18.19 15.52 12.32 12.49 9.7 8.43
ωFO(β=0◦)/2 6.18 5.71 3.99 7.68 8.96 7.68 6.12 6.2 4.84 4.2

Table 6. Mean absolute errors (MAE) and standard deviations (σ) for each GCS fit parameter from the simulated MHD white-light images. Column 1: averaged
over all simulated MHD configurations (D – H), and we also show the minimum and maximum MAE. Column 2: standard deviations and MAE the single viewpoint
configuration D. Column 3: standard deviations and MAE averaged over configurations E and F in which two viewpoints are separated by 60◦. Column 4: standard
deviations and MAE averaged over configurations G and H in which two viewpoints are separated by 120◦. The trends in this table are also clearly visible in the
box and whisker plots shown in Figure 12.

features or taking a different approach to the fitting.

4. Discussion

CME reconstructions from both the single-viewpoint syn-
thetic GCS and simulated MHD white-light data had largest er-
rors and spreads overall. In both cases, as the number of view-
points increased, the errors decreased. Under both scenarios
of synthetic white-light data, as the number of viewpoints in-
creased from one to two, the errors decreased by approximately
4◦ in latitude, 22◦ in longitude, 14◦ in tilt, 10◦ in half-angle,
1 R� in height, and 0.05 in the ratio κ. We did not find a signif-
icant decrease in errors when going from two to three view-
points for our specific hypothetical three spacecraft scenario
using synthetic GCS white-light data. Note that this result is
obtained for a set-up with all three viewpoints within the eclip-
tic plane (where all coronagraph imagery has been available to
date). Results may in fact differ if a viewpoint at an out-of-
ecliptic location is considered.

Over all configurations and numbers of viewpoints, the stan-
dard deviations and MAE in deriving the CME parameters are
significantly higher in the case of the simulated MHD white-
light data (Table 6), compared to those from the synthetic
white-light images generated by the GCS model (Table 2), ex-
cept for the half-angle and height. The values in these ta-
bles are a starting point for quantifying the error in CME pa-
rameters from white-light reconstructions. For example, we
can make an estimate by rounding the maximum errors across
both tables: ∆θ (latitude)=6◦+2◦

−3◦ , ∆φ (longitude)=11◦+18◦
−6◦ , ∆γ

(tilt)=25◦+8◦
−7◦ , ∆α (half-angle)=10◦+12◦

−6◦ , ∆h (height)=0.6+1.2
−0.4 R�,

∆κ (ratio)=0.1+0.03
−0.02, ωEO/2 = 5.6◦+1.79◦

−1.38◦ , ωFO/2 = 12.7◦+14.61◦
−4.71◦ ,

ωFO(β=0◦)/2 = 6.3◦+6.51◦
−2.27◦ .

We can also compare individual observer consistency be-
tween synthetic GCS and simulated MHD white-light images.
We ask: Do observers tend to stay within the same range of
parameters for ratio (κ) and half-angle (α)? We found that
about half of the observers measured similar ratios for both

the GCS and the MHD fits that are very close to the default
values from the Thernisien et al. (2009) analysis (0.4) with a
spread of about 0.1. The rest of the observers did not stay
within this range and fitted significantly different ratio values
for the GCS-generated versus the MHD-generated white-light
images. As such, there is no difference between the GCS-
generated and MHD-generated fittings, but overall observers
tend to stay within the 0.2 to 0.6 range, with some observers
staying true to the default value, not deviating too much. This
bias towards the default value is likely due to the starting ratio
value of GCS fitting tool, but also because in many situations
there are not enough observational constraints to justify chang-
ing the ratio (for instance, when the CME is on the limb and the
tilt angle ranges in intermediate values). In fact, a proper deter-
mination of the ratio can only be obtained using simultaneous
observations of CMEs away from the ecliptic as performed by
Cremades et al. (2020). In a sample of 12 CMEs, they found a
median value of 0.33 for the ratio. One might argue, however,
that these CMEs might not be representative of the full popula-
tion since they are slower events associated mostly with quies-
cent filaments. The analysis of projected speeds of CMEs (for
the lateral growth and centroid variation) from Balmaceda et al.
(2020), on the other hand, suggests higher ratio values with a
median of κ=0.7 for a sample of 333 CMEs. Further investiga-
tions/studies in this direction are needed. In this regard, Solar
Orbiter will provide helpful new views away from the ecliptic.
For the α half-angle GCS parameter, observers tend to be less
conservative and use a wide range of values. This conclusion
might be something for space weather forecasting centers to
consider when training their forecasters.

We discussed the individual observer synthetic GCS correla-
tion plots color-coded by observer in Section 2.3, Figure 3, and
the individual observer simulated MHD fitting biases in Sec-
tion 3.2. In both cases we saw that while each observer on its
own creates subjective spread in parameters, there is a similar
spread generated between observers that fit different features of
the CME. Arguably, an ideal scenario would be for an experi-
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Fig. 10. Simulated white light data created from an MHD simulation of a hy-
pothetical CME from the different viewpoints shown in Figure 8 and listed in
Table 4. The images were created for a COR2-like field of view, out to approx-
imately 15 R�. Here we have zoomed in to approximately 5 R� to better show
the CME. The GCS wireframes derived from the MHD truth are also shown on
these images. Configurations D, E, F, G and H are shown in rows 1-5.

Fig. 11. Correlation plots of GCS parameters for each of the 5 configurations
(D through H) in Figure 8. Events D, E, F, G, H correspond to red, blue, light
blue, purple and pink, respectively. Please note the differing axis ranges used
for the various parameters.

enced observer to derive the best CME parameters by fitting the
“correct” CME features that matches the “true” CME parame-
ters. However, since neither the “correct” features or “true” pa-
rameters are known, we conclude that it is important to consider
fitting different CME features when generating an ensemble of
CME parameters from white-light reconstructions.

We note that another important factor to consider when per-
forming CME reconstructions is the processing of the white-
light data. In this study we used direct white-light images, not
running- or base-difference images that are commonly used on
actual white-light data. We will examine the impacts of image
processing on CME reconstructions in a follow-up study, using
real CME events and white-light data.

Finally, we note that the height of the CME fits of the syn-
thetic GCS white-light data was around 10 R�, compared to
around 4 R� for the simulated MHD white-light, and this could
have an impact on the uncertainty of the CME fits. Experienced
observers on the team tend to prefer deriving CME parameters
at a height of approximately 10 to 15 R�. We examined the
MHD simulation for a later time step at a height of about 10
R� and found that the MHD truth CME parameters remained
largely the same, except for some slight increase in longitude
by 10◦, and slight tilt in the clockwise direction (but still re-
maining largely vertical). Therefore we conclude that it is still
reasonable for us to compare the CME fitting errors between the
synthetic GCS and simulated MHD white-light data at different
heights.
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Fig. 12. Box and whisker plots of GCS fit parameters for ten fits relative to the ground truth for the MHD simulated event for configurations D, E, F, G and H (see
Figure 8). The median and mean is shown by the black and red horizontal lines respectively, the box represents the first and third quartiles, and the whiskers show
the full range. The grey bars denote the uncertainty of the ground truth as discussed in Section 3. First and second rows: GCS parameters of latitude, longitude,
axial tilt, half angle, height of apex, aspect ratio (direct GCS outputs). Third row: face-on width, face-on width at β = 0◦, edge-on width (derived parameters).

5. Conclusions

We discussed what errors are introduced when trying to de-
rive CME kinematics from observations. While in the past sev-
eral studies have focused on comparing different CME recon-
struction methods (e.g., Mierla et al., 2010) as well as determin-
ing trends in over- and/or underestimation of parameters (e.g.,
Jang et al., 2016), no published literature to our knowledge has
explored the subjectivity of the human-in-the-loop that affects
the 3D CME parameters that are obtained from any reconstruc-
tion technique. With this work, we took important first steps
toward this goal.

Because it is not possible to know the “true” geometrical pa-
rameters of the detected CME for observational data, we have
designed synthetic situations where the “true” geometric pa-
rameters are known in order to quantify such uncertainties for
the first time. We generated synthetic line-of-sight integrated
white-light intensity images using the ray-tracing option from
the GCS model software itself. We considered three different
GCS configurations, each configuration with a different space-

craft separation set up. We performed our analysis on both sin-
gle and multiple viewpoint scenarios.

From the results, we observe that moving from one view-
point to two viewpoints, the performed fits tighten around the
true values for both synthetic GCS and simulated MHD white-
light data, suggesting the critical need for (at least) two view-
points for coronagraph observations. Under both scenarios
of synthetic white-light data, as the number of viewpoints in-
creased from one to two, the errors decreased by approximately
4◦ in latitude, 22◦ in longitude, 14◦ in tilt, 10◦ in half-angle,
1 R� in height, and 0.05 in the ratio κ. Specifically, having only
one viewpoint it is very well possible to find visually good fits
that have a wide range of parameters (e.g., higher/lower width
in combination with lower/higher height).

As expected, the errors in measured CME parameters
are generally significantly higher in the case of the simu-
lated MHD white-light data compared to those from the syn-
thetic white-light images generated by the GCS model. We
found the following CME parameter error bars as a starting
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point for quantifying the minimum error in CME parame-
ters from white-light reconstructions: ∆θ (latitude)=6◦+2◦

−3◦ , ∆φ
(longitude)=11◦+18◦

−6◦ , ∆γ (tilt)=25◦+8◦
−7◦ , ∆α (half-angle)=10◦+12◦

−6◦ ,
∆h (height)=0.6+1.2

−0.4 R�, ∆κ (ratio)=0.1+0.03
−0.02, ωEO/2 = 5.6◦+1.79◦

−1.38◦ ,
ωFO/2 = 12.7◦+14.61◦

−4.71◦ , ωFO(β=0◦)/2 = 6.3◦+6.51◦
−2.27◦ .

We note that what may seem like a small error in the CME
height measurement (0.6 R�), directly propagates into a larger
error for the derived CME speed. Using two consecutive fits
of the synthetic GCS white-light data, we determined errors
in the CME linear speed and found a MAE range from 10 to
49 km s−1. This represents a lower bound estimate of the errors
that arise from determining the CME speed from coronagraph
images. We also investigated the effect of the spread in CME ar-
rival times by simulating each set of fits as an ensemble run with
the ANTEATR model. Our analysis shows that for the range of
considered CME speeds arrival time errors of up to 4 hours are
found (representing a lower bound estimate). The CME propa-
gation model’s sensitivity determines which parameter has the
most impact on the arrival time. In our case, we notice that the
half-angle and ratio determined by the GCS model creates the
largest difference in arrival time, due to its impact on the drag
experienced by the CME in the model. Comparing our results
to the ensemble CME parameter sensitivity study of Kay et al.
(2020), they found that an accuracy of 5◦−10◦ in CME width is
necessary to achieve a CME arrival time error of 5 hours or less
(for fast and extreme CMEs). In our study, especially for one
viewpoint observations, we find a MAE=10◦+12◦

−6◦ for the half an-
gle, which implies this would lead to a CME arrival time error
greater than 5 hours.

When using the GCS model to fit the MHD simulated CME,
first, we find that in fact, the GCS model is too simple to de-
scribe the simulated CME. We expect that for real observed
CMEs, especially complex events, this also holds true. Second,
we want to remark that extracting GCS parameters from simu-
lation results typically requires a modification of the results and
some assumptions. For the specific model used here, this re-
sulted in the determination of the face-on half-width for β = 0◦,
which is rather straightforward. However, the GCS model is
only equivalent to the classic ice-cream cone model (Fisher &
Munro, 1984) when α is set to zero and as such if a performed
fit has a non-zero α, a choice will have to be made on how to
modify the parameters and this will add an additional error.

Apart from the subjectivity of the user performing the fit,
other difficulties that introduce errors when performing a fit on
real observations arise. We note here a few, but the list is non-
exhaustive. Firstly, each user decides for themselves how to
process the data. One can decide to use running differences,
i.e. subtracting two consecutive images for all fits on the stud-
ied event, or base differences, i.e. subtracting always the same
pre-event image; as opposed to using ‘direct’ images as done
in the present study. Also, differences in data processing can
produce artifacts in the images that may lead to the false inter-
pretation of a feature as part of the CME, or also may enhance
faint features that are almost imperceptible in other type of im-
ages. Our exercise with the simulated MHD white-light images
provides a clear example on how the CME fit parameters may

vary from observer to observer. This study represents a lower
limit, because when using real white-light data, the error will be
always larger. Secondly, the GCS model may not perfectly fit
the observed CME shape. As such, the observer decides what
feature of the CME to perform the fit on, e.g. by fitting the over-
all shape of the CME the best, or trying to get the frontal part
fitting best. Furthermore, the knowledge of the user on the GCS
model and its geometric dependencies highly influences the fit
they are able to perform.

While it is rather difficult to disentangle all of the possible
influences that generate errors in determining the CME kine-
matics, there are a few things we can do to better estimate this.
In this work, we have made first steps towards this by consid-
ering a set up where the “true” observational values of the de-
tected CME are known. Furthermore, our ISSI team has a study
in progress about the effect of the different processing (running
vs. base differences), studied on a real CME event. Lastly, the
team performed blind fits on different real CME events, so that
each event has been fitted multiple times by different people,
for the first time creating a broader view on how strong the dif-
ferences between performed GCS fits are. The results of the
blind fits will then be used as inputs to a variety of CME ar-
rival time models which will allow us to more comprehensively
propagate the errors from CME parameters to CME arrival time
and impact.
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Magnetohydrodynamic Simulations of Interplanetary Coronal Mass Ejec-
tions. Astrophys. J., 777, 76. doi:10.1088/0004-637X/777/1/76.

Liu, Y., Davies, J. A., Luhmann, J. G., Vourlidas, A., Bale, S. D., & Lin, R. P.
(2010). Geometric Triangulation of Imaging Observations to Track Coronal
Mass Ejections Continuously Out to 1 AU. Astrophys. J. Lett., 710(1), L82–
L87. doi:10.1088/2041-8205/710/1/L82. arXiv:1001.1352.

Luhmann, J. G., Gopalswamy, N., Jian, L. K., & Lugaz, N. (2020). ICME
Evolution in the Inner Heliosphere. Sol. Phys., 295(4), 61. doi:10.1007/
s11207-020-01624-0.

Manchester, W., Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T., &
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